Archive for the 'Sustainable Energy Management' Category


StatoilHydro storing 2,800 tonnes of CO2 underground every day

“]Dag Myrestrand) ]

[Caption: Carbon dioxide (CO2) is separated from the well stream on the Sleipner T platform . (Photo: Dag Myrestrand)

Norway’s oil giant Statoil that merged last year with Norsk Hydro to form StatoilHydro, has been storing every day nearly 2,800 tonnes of carbon dioxide (CO2) that is removed from natural gas produced on its Sleipner West field in the North Sea every day.

The carbon dioxide is injected and stored in the Utsira formation, contains porous sand rock filled with salt water, rather than being emitted into the atmosphere. This sandstone formation extends over a large area in the Norwegian sector of the North Sea. The facility has been online since 1996, recording a very high regularity.

The company believes that carbon storage under the seabed may be an important tool in the efforts to slow global warming.

StatoilHydro says its research and monitoring of the carbon injection into the Utsira formation show that the greenhouse gas is retained in the formation and that this is an environmentally friendly and safe way of reducing climate gas emissions.

“This is a good carbon capture demonstration project. Sleipner documents that carbon storage is feasible and safe,” says Rolf Håkon Holmboe, head of HSE on the Sleipner field.

“We wish to build on the experience we have gained through 12 years of operations employing carbon capture and storage techniques,” says Sjur Talstad, vice president, Sleipner production.

Used for other discoveries?
The Sleipner organisation is exploring the possibilities of offering other petroleum discoveries in the area the opportunity to process gas, remove CO2 from the gas and store it in the Usira formation.It says the possibility of receiving carbon dioxide from land for injection into the Utsira formation is also being considered.

The EU aims to cut Europe’s carbon emissions by 20 per cent by 2020 and carbon storage may be one of several necessary requirements. A decision by the EU Parliament as to whether, and on what conditions, such storage may be permitted is scheduled for 2008.

CO2 capture is done at Sleipner with a conventional amine process. The company says it was a challenge to design this process compact enough so that it could be placed on an offshore platform in the middle of the North Sea, 250 kilometres from land.

The extra equipment cost for the CO2 compression and the drilling of the CO2 injection well was roughly $100 million. Until now eight million tonnes of CO2 have been stored. The spreading of the CO2 underground has been mapped in various research projects, which were partly financed by the European Union (EU).

In 1990 the Statoil-operated gas condensate field Sleipner Vest in the North Sea was in its planning phase. The natural gas at Sleipner contains naturally around 9 per cent CO2, much higher than customer requirements, and had to be removed first.

In 1991 the Norwegian authorities introduced a CO2 offshore tax aimed at reducing CO2 emissions, which currently is around $50 per tonne. Statoil proposed to remove the CO2 offshore and inject it into a deep geological layer below the Sleipner platform, where the seperated CO2 will be stored, probably thousands of years, says StatoilHydro. This layer contains porous sand rock filled with salt water, and is called the Utsira formation. The CO2 is prevented from seeping into the atmosphere by a 800 metre thick gastight cap rock above this layer.

The Sleipner license partners supported this idea as its implementation meant a reduction in CO2 emissions of nearly one million tonnes per year, which was roughly 3 per cent of the Norwegian CO2 emissions in 1990.

The field became operative in October 1996, making it the the world’s first offshore CO2 capture plant, together with the world’s first CO2 storage project in a geological layer 1000 metres below the sea floor.


Snøhvit CCS Project

Snøhvit field di Barents Sea adalah gas supply LNG Plant pertama di dunia (Liquefied Natural Gas) dengan CO2 capture and storage technology.

Field ini didevelop dengan subsea installation dan dengan panjang 145 km multiphase pipeline mentransport gas ke Melkoya, island facility.

Berlokasi di hammerfest, dimana LNG Plant berada. Dimana gas liquid dibuat dengan mendinginkan sampai dengan minus 163 C sehingga dapat di ekspor ke Europe dan USA menggunakan LNG Tanker.


Snøhvit gas mengandung CO2 yang akan membeku pada temperatur yang relatif tinggi dibandingkan dengan natural gas. Oleh karena itu harus di pisahkan sebeluh didinginkan menjadi LNG.

CO2 harus di separasi dari hydrocarbon di early stage dari process agar gas mixture tidak mendingin dan mengganggu process heat transfer dalam process.

145 km pipa lainnya memastikan bahwa CO2 dari liquefaksi plant di kirim kembali ke Snøhvit field. Dimana akan di simpan dalam geological layer yang cocok, Porous Sandstone yang dinamakan Tubåen formation.

Struktur ini berlokasi 2500 meter di bawah sea floor dan di bawah gas bearing layers di utara.

lebih dari 700.000 tonnes dari CO2 tiap tahunnya akan disimpan dengan cara ini.

Studi reservoar terpisah akan dibangun untuk memeriksa bagaimana kelakukan/sifat CO2 di dalam reservoar. Project ini sebagian didanai oleh European Union.

StatoilHydro sebagai operator untuk pembangunan dan operasi di daerah kutub utara ini. Produksi dari Snøhvit di mulai pada Oktober 2007.

sumber : StatoilHydro


In Salah – Algerie CCS Project

Project ke 3 StatoilHydro untuk CO2 injection adalah berlokasi di In Salah Gas Field
Di central Algerian sahara.

Field dioperasikan bersama oleh Sonatrach, BP, dan StatoilHydro.

Baik alasan bisnis dan teknis dari separasi CO2 gas dari natural gas adalah sama dengan di Sleipner.

Separasi adalah dilakukan dengan Amine process.

Sejak tahun 2004, pertahunnya telah di capture dan di simpan sekitar 1,2 million tonnes CO2 di In Salah Field.

CO2 gas disimpan di layer yang sama dengan natural gas, tetapi dalam jarak yang aman.

Cap rocks yang sama yang menjaga narutal gas in place diharapkan juga akan menjaga CO2 gas secara aman tersimpan.

Sebagaimana project serupa yang sedang dilakukan di Mongstad, diharapkan teknologi dan inovasi ini akan bermanfaat untuk carbon capture storage masa depan.

sumber : StatoilHydro


Mongstad CCS Project

Thermal Power Plant baru yang berlokasi di Mongstad Norway (EVM) akan menjadi energy saving yang sangat besar dalam hubungannya dengan masa depan capture dan storage dari CO2.

Pemerintah Norwegia dan StatoilHydro telah menandatangani perjanjian untuk konstruksi full scale CO2 Capture and Storage di Mongstad.

Di dalam tahap pertama dari konstruksi plant tersebut, akan dapat menangkap 100.000 tons CO2 per tahun. Perencanaan harus selesai bersamaan dengan Heat Power Plant mulai beroperasi di tahun 2010.

Tahap 2 yang diharapkan dari full scale sistem ini adalah kemampuan meng capture CO2 dari Heat Power Plant dan sumber emisi lainnya di dalam atau di luar Mongstad Refinery.

Keputusan final dengan full scale installation size dan type akan diselesaikan di 2012, dan design dan pekerjaan konstruksi akan dilakukan sesudahnya.

Kerjasalam resolusi juga dilakukan pada Lapangan offshore Troll, dimana Mongstad akan menyediakan efisiensi energi yang tinggi.

Menggunakan power yang efektif, power heating ini dapat memperkuat dan pembangunan lebih lanjut Mongstad sebagai pusat industri.

Ketika plant dalam operasi, kemungkinan juga untuk mengambil manfaat dari energy yang tidak terpakai.

Fasilitas produksi energi baru ini akan memiliki fasilitas 280 MW listrik dan 350 MW dalam bentuk heat. Listrik ke lapangan offshore Troll berdasarkan kontrak partner dari Thermal Power Plant akan membakar Natural Gas dari Filed dan Fuel gas dari Refinery, dan sebagai tambahan untuk mensuplai refinery juga dengan power ke Troll A gas Platform dan Kollsnes.

Plant ini akan menjamin long term supply listrik ke Troll. Dimana kebutuhan power meningkat sebagai konsekuensi reservoir pressure drops, dan juga kebutuhan untuk menginstall kapasitas kompressor yang lebih besar untuk mengtransport gas.

Rencana gas pipeline dari Kollsness ke Mongstad adalah bagian dari production dan landing system untuk Troll Field. Pipeline akan mentransport fuel yang digunakan untuk produksi dari listrik ke Troll A dan Kollsnes Plant.

Heating Power Plant di Mongstad akan memperkuat energi balanse dari total power di Norwegia dan menolong kekurangan energi di Bergen region.

Ini akan menjadi sebuah project yang solid, baik bagi industri dan ennvironment.

Peletakan batu pertama telah dilakukan pada mid-january 2007, Heat dan Power Plant direncanakan siap untuk beroperasi di tahun 2010.

Ini akan dibangun, dimiliki dan dioperasikan oleh Danish Power Company , Dong Energy.

Sumber : StatoilHydro


lovely TV Ad


Wind Energy Indonesia


Wind is a form of solar energy. The uneven heating of the atmosphere by the sun, the irregularities of the earth’s surface, and rotation of the earth cause winds. Wind flow patterns are modified by the earth’s terrain, bodies of water, and vegetation. Humankind uses this wind flow, or motion energy, for many purposes, to name a few: flying a kite/zeppelin, sailing, grinding grain, pumping water, and even generating electricity.

The terms wind energy or wind power describe the process by which the wind is used to generate mechanical power or electricity. Wind turbines convert the kinetic energy in the wind into mechanical power. This mechanical power can be used for specific tasks (such as grinding grain or pumping water) or a generator can convert this mechanical power into electricity.

A wind turbine works the opposite of a fan. Instead of using electricity to make wind, like a fan, wind turbines use wind to make electricity. The wind turns the blades, which spin a shaft, which connects to a generator and makes electricity. Large and modern wind turbines operate together in wind farms to produce electricity for utilities, while homeowners and remote villages, to help meet their energy needs, use small turbines.

Indonesia has relatively available potential site for wind energy utilization, but its utilization is still low. Currently, research and efforts are continuously conducted to open the possibilities of increasing the wind energy utilization.

Advantages/Disadvantages of Wind Energy

Despite its disadvantages, wind energy offers many advantages, which explains why it’s the fastest-growing energy source in the world. Research efforts are aimed at addressing the challenges to larger use of wind energy.

Because wind energy is fueled by the wind, a clean fuel source, it makes wind energy a clean energy. Wind energy does not pollute the air like common power plants that rely on combustion of fossil fuels, such as coal or natural gas. Wind turbines do not produce harmful emissions that cause acid rain or greenhouse gasses, so it is environmentally friendly.
Wind energy is a domestic source of energy, produced in the Indonesia . The nation’s wind supply is relatively available (especially in the eastern part).
Wind energy relies on the renewable power of the wind, which cannot be used up. As already mentioned, wind is actually a form of solar energy.
Nowadays, wind energy is one of the lowest-priced renewable energy technologies available. Depending upon the wind resource and project financing of the particular project, wind energy cost less than 6 cents USD per kilowatt-hour (for potential site with wind speed > 5 m/s or offshore).
Wind turbines can be constructed on farms or ranches, thus benefiting the economy in rural areas, where most of the best wind sites are found. Farmers and ranchers can continue to work the land because the wind turbines use only a fraction of the land. Wind power plant owners make rent payments to the farmer or rancher for the use of the land.

Wind power must compete with conventional generation sources on a cost basis. Depending on how energetic a wind site is, the wind farm may or may not be cost competitive. Even though the cost of wind power has decreased dramatically in the past 10 years, the technology requires a higher initial investment than fossil-fueled generators (and even other renewable based generators).
The major challenge to using wind as a source of power is that the wind is intermittent and it does not always blow when electricity is needed. Wind energy cannot be stored (unless batteries are used); and not all winds can be harnessed to meet the timing of electricity demands.
Suitable wind sites are often located in remote locations, far from cities where the electricity is needed.
Wind resource development may compete with other uses for the land and those alternative uses may be more highly valued than electricity generation.
Although wind power plants have relatively small impact on the environment compared to other conventional power plants, there is some concern over the noise produced by the rotor blades, aesthetic (visual) impacts, and sometimes birds have been killed by flying into the rotors. Most of these problems have been resolved or greatly reduced through technological development or by properly siting wind plants.

General Condition in Indonesia
Wind energy development is part of national energy program in order to realize a sustainable supply and utilization of energy.

There are some potential locations in the country for wind energy utilization.
Installed capacity for wind power is relatively still small compared to its potential.
Wind Energy Potential in Indonesia

Wind energy potential in Indonesia quite varies and could be classified into three categories, namely:
small-scale utilization, with wind speed of 2.5 – 4 m/s and capacity up to 10 kW;
medium-scale utilization, with wind speed of 4 – 5 m/s and capacity of 10 – 100 kW;
large-scale utilization, with wind speed and capacity higher than 5 m/s and 100 kW, respectively.

Recorded and measured wind data are as follow:
Region of Nusa Tenggara Barat: wind speed ranging from 3.4 – 5.3 m/s (10 locations);
Region of Nusa Tenggara Timur: wind speed ranging from 3.2 – 6.5 m/s (10 locations);
Region of Sulawesi and other: wind speed ranging from 2.6 – 4.9 m/s (10 locations).

Detail data* of each region is tabulated below.

* Data is properties of National Institute for Aeronautics and Space ( LAPAN).

National Wind Energy Technology

Generally speaking, US / Europe wind turbines available in the market are usually designed for high wind speed application which is not quite appropriate for wind condition in Indonesia . Meanwhile, there are some wind turbines, which might be appropriate to be used in the country. Therefore, development of wind energy technologies in Indonesia is widely opened. Currently, wind energy technologies developed in the country are designs and prototypes for:
power plants with capacity of 50 – 10,000 W;
mechanical power pumping with capacity of 45 – 250 liters/min;
power plants with capacity of 3.5 kW coupled with electrical pump for water pumping.

National Fabrication Capability

In general, status of national fabrication for wind energy conversion system is:
small-scale utilization: national industry has already able to built wind energy conversion system components up to 5 kW capacity and they are ready for mass production if the market available;
medium and large scale utilization: still under development.


Testing, information dissemination, and direct utilization of wind energy for various applications, to wit: lighting, battery charging, radio communication, television, radio, home industry, telecommunication, water pumping.

List of Companies Working on Wind Energy

Below are list of companies involved in wind energy development in Indonesia . To name a few:
PT Indonesia Power
PT Bumi Energi Equatorial
Obayashi Corporation
PT Guna Elektro
PT Indokomas Buana Perkasa
PT Citrakaton Dwitama.

Supporting Facilities

To support wind energy development, the country already has various facilities:
wind potential measurement equipments;
wind energy conversion system laboratory;
field-testing laboratory;
aerodynamic laboratory – subsonic speed.


Below are several barriers encountered for wind energy development in the country, viz.:
technical and financial difficulties in data access for input on establishment of wind potential map;
limited fund to access and identify potential location especially in islands and remote areas;
relatively high price for wind energy compared to fossil based energy;

available wind energy products (usually for high speed application) are not suitable for the country’s application (low speed).

source :


Energi Tidal (Pasang Surut)

Energi tidal atau energi pasang surut barangkali kurang begitu dikenal dibandingkan dengan energi samudera yang lain seperti energi ombak (wave energy). Jika dibandingkan dengan energi angin dan surya, energi tidal memiliki sejumlah keunggulan antara lain: memiliki aliran energi yang lebih pasti/mudah diprediksi, lebih hemat ruang dan tidak membutuhkan teknologi konversi yang rumit. Kelemahan energi ini diantaranya adalah membutuhkan alat konversi yang handal yang mampu bertahan dengan kondisi lingkungan laut yang keras yang disebabkan antara lain oleh tingginya tingkat korosi dan kuatnya arus laut.

Saat ini baru beberapa negara yang yang sudah melakukan penelitian secara serius dalam bidang energi tidal, diantaranya Inggris dan Norwegia. Di Norwegia, pengembangan energi ini dimotori oleh Statkraft, perusahaan pembangkit listrik terbesar di negara tersebut. Statkraft bahkan memperkirakan energi tidal akan menjadi sumber energi terbarukan yang siap masuk tahap komersial berikutnya di Norwegia setelah energi hidro dan angin. Keterlibatan perusahaan listrik besar seperti Statkraft mengindikasikan bahwa energi tidal memang layak diperhitungkan baik secara teknologi maupun ekonomis sebagai salah satu solusi pemenuhan kebutuhan energi dalam waktu dekat.

sumber :

Pembangkit listrik tenaga tidal terapung. Turbin-turbin air dan mesin-mesin listrik terletak di bawah air, hanya bagian atas dari pembangkit listrik tersebut yang tampak diatas permukaan laut (Sumber: Statkraft)

Perlu diketahui bahwa potensi energi tidal di Indonesia termasuk yang terbesar di dunia, khususnya di perairan timur Indonesia. Sekarang inilah saatnya bagi Indonesia untuk mulai menggarap energi ini. Jika bangsa kita mampu memanfaatkan dan menguasai teknologi pemanfaatan energi tidal, ada dua keuntungan yang bisa diperoleh yaitu, pertama, keuntungan pemanfaatan energi tidal sebagai solusi pemenuhan kebutuhan energi nasional dan, kedua, kita akan menjadi negara yang mampu menjual teknologi tidal yang memberikan kontribusi terhadap devisa negara. Belajar dari India yang mampu menjadi salah satu pemain teknologi turbin angin dunia (dengan produk turbin angin Suzlon), maka tujuan yang kedua bukanlah hal yang terlalu muluk untuk kita wujudkan.


May 2018
« Mar    

Recent Comments

mustaqim indrawan on Pembangkit Listrik Tenaga Angi…
Deny WS on Pembangkit Listrik Tenaga Angi…
Abdurrahman ibnu uma… on [INFO] Open Source Software…
sinta on Wind Energy Indonesia
rivanroyono on Teknik Fisika (Engineering Phy…

Flickr Photos

Blog Stats

  • 131,819 hits

where you from

<script language="Javascript" src=" are browsing our website through ISP .">
Powered by