Archive for the 'Offshore Technology' Category

27
Jan
09

Floating LNG plant off Indonesia to cost less

LOS ANGELES, Jan. 26 — The cost of a proposed floating LNG plant in Indonesia’s Timor Sea would be around $10 billion-about half an earlier government estimate-due to lower infrastructure costs, according to Inpex Holdings Inc., the project’s developer. “We expect [a figure of] around $10 billion,” said Shunichiro Sugaya, Inpex senior general manager of the Masela project, explaining that the price of steel is going down with the price of oil and that “reflects the lower price, lower capex (capital expenditure) .” Earlier this month, Indonesia tentatively agreed to Inpex’s proposal for the construction of a floating LNG plant, intended primarily for use at Abadi natural gas field in the Timor Sea. “In principle we have agreed to [the] Inpex proposal, but we are still evaluating the economic value of the project,” said Evita Legowo, director general of oil and gas at the Indonesian energy ministry (OGJ Online, Jan. 11, 2009).

Snøvhit, the world’s first all-electric LNG plant, was shipped from Spain to northern Norway.

Snøvhit, the world’s first all-electric LNG plant, was shipped from Spain to northern Norway.

Inpex Corp. currently is the sole operator of Abadi gas field on the Masela Block in eastern Indonesia, but reports surfaced earlier this month that Royal Dutch Shell was considering taking part in the project. At the time, Inpex said it would not rule out the possibility of inviting companies to take part in the project, but it had not yet held any talks with any company about selling stakes. “Since this is a big project, many people are interested. But we are not looking for partners for the time being,” said Kazuya Honda, Inpex’s public relations group manager. “Partnering with other companies in energy projects is common practice in the industry,” and there is a possibility that “Inpex would partner with somebody if we think it’s necessary to diversify risks,” he added. However Inpex has not decided whether to look for other companies to join the project, according to Sugaya. “We have not yet decided (on) any farm-out policy now,” he said, adding that under the production-sharing contract there is 10% participation for Indonesia and 90% for Inpex. The Japanese firm estimates there is more than 10 tcf of gas reserves in Abadi field, which-if confirmed-would make the project the second-biggest new gas field after the Tangguh project in Papua, which has combined reserves of 14.4 tcf. Inpex plans to construct one LNG train having a capacity of 4.5 million tonnes/year, with production to begin in 2016. Japanese buyers constitute the main market for the LNG, while the Indonesian government also wants some supply for its domestic market, said Sugaya.

Contact Eric Watkins at hippalus@yahoo. com.

http://www.ogj. com/display_ article/351435/ 7/ARTCL/none/ none/Floating- LNG -plant-off-Indonesi a-to-cost- less/?dcmp= OGJ.Daily. Update

02
Nov
08

Menyulap Gelombang Laut jadi Energi Listrik

Oleh: Restituta Ajeng Arjanti

Alam menyediakan banyak sumber daya yang bisa diolah menjadi energi alternatif. Gelombang air laut termasuk salah satunya. Memanfaatkan sumber daya alam tersebut, Zamrisyaf, salah satu staf perencanaan PLN di wilayah Sumatera Barat, mengembangkan sebuah pembangkit listrik.


Memanfaatkan Sistem Bandul

Pembangkit listrik yang digagas Zamrisyaf dibuat dengan memanfaatkan tenaga gelombang laut dan sistem bandulan. Rancang bangunnya berbentuk ponton, sampan yang rendah dan lebar, yang ditempatkan mengapung di atas permukaan air laut.

Konsep pembangkit listrik tenaga gelombang laut sistem bandulan (PLTGL-SB) ini sebenarnya sederhana. Gerakan air laut akan menggerakkan ponton sesuai dengan alur dan fluktuasi gelombang air laut. Gerakan ponton akibat fluktuasi gelombang laut itu akan membuat bandul-bandul yang ada di dalamnya ikut bergoyang seperti lonceng. Gerakan bandul tersebut, kata Zamrisyaf, akan ditransmisikan menjadi gerakan putar untuk memutar dinamo. Dari situlah, selanjutnya PLTGL-SB bisa menghasilkan energi listrik.

Idealnya, PLTGL-SB dibangun di perairan yang memiliki potensi gelombang laut. Penempatannya, menurut Zamrisyaf, kurang lebih kurang 500-1000 meter dari bibir pantai. Ia menambahkan, seluruh peralatan penggerak, mulai dari bandul sampai dinamo, dipasang dan ditempatkan di dalam ponton. Dengan begitu, selain ponton, tidak ada satupun peralatan utama yang terkena air laut.

Kelebihan

Pembangkit listrik tenaga gelombang laut dengan sistem bandul ini punya beberapa kelebihan. Yang pertama, teknologinya sangat akrab dan ramah lingkungan. “Di samping tidak menggunakan bahan bakar minyak, dalam penempatan pembangkit ini tak ada lahan yang perlu dimodifikasi. Jadi, tidak merusak lahan,” papar Zamrisyaf. Bahkan, tambahnya, teknologi ini bisa mengatasi abrasi pantai karena energi gelombang laut yang akan menghantam pantai diambil oleh pembangkit untuk dijadikan energi listrik.

Kelebihan lainnya, dibandingkan dengan pembangkit listrik tenaga gelombang laut lainnya yang umum diproduksi di luar negeri, misalnya yang memanfaatkan temperatur, arus, atau tekanan air laut; PLTGL sistem bandulan ini lebih aman dari kemungkinan rusak akibat air laut. Alasannya, tak ada satupun peralatan utamanya yang terkena air laut, kecuali ponton. Karena itulah, kata Zamrisyaf, pembangkit listrik yang menjanjikan kapasitas daya sekitar 500kW per unit ini cocok untuk diterapkan di daerah kepulauan seperti Indonesia.

Terinspirasi Lonceng Kapal

Zamrisyaf mengaku sudah tertarik dengan energi gelombang air lalu sejak akhir tahun 1990. Ceritanya dimulai saat dia, dalam perjalan pulang ke Padang dari kepulauan Mentawai, merasakan gelombang laut mengombang-ambingkan kapal yang ditumpanginya. Saking besarnya gelombang, bahkan ia merasa kesulitan berjalan di atas kapal yang besar itu. “Saya mulai berpikir tentang bagaimana cara dan bentuk teknologi untuk memindahkan energi gelombang laut menjadi energi mekanik untuk pembangkit listrik,” tuturnya.

Penasaran mencari bentuk teknologi yang sesuai, Zamrisyaf sering mengamati perahu-perahu nelayan yang sedang mencari ikan. Ilham akhirnya datang saat dia melakukan perjalanan dari Padang ke Jakarta naik kapal “Lambelu”, pada awal 2000.

“Dalam perjalanan itu, saya mulai mengamati keadaan sekeliling kapal. Akhirnya mata saya tertuju pada lonceng yang ada di depan kapal. Saya tidak tahu untuk apa lonceng itu,” katanya. Keesokan harinya, dari temannya, baru Zamrisyaf tahu apa kegunaan dari lonceng tersebut. “Teman saya bilang, malam itu gelombang cukup besar. Akibat dari gelombang yang besar itu, bunyi lonceng kapal terdengar. Nah, baru saya tahu bahwa lonceng itu untuk menandakan besarnya gelombang. Itulah kira-kira bentuk teknologi yang saya cari,” kisahnya.

Setelah menemukan bentuk teknologinya, Zamrisyaf mulai melakukan penelitian dan uji coba kecil-kecilan. “Peralatan utama yang diperlukan untuk PLTGL sistem bandulan ini, di samping ponton dan bandul juga perlu dilengkapi dengan bevel-gear dan minimal dua buah one-way bearing (untuk satu bevel-gear), dan peralatan pendukung lainnya, seperti pompa dan motor hidrolik,” jelasnya.

Pengembangan

Menurut Zamrisyaf, pengembangan pembangkit listrik ini cukup memakan waktu lantaran terkendala beberapa hal. “Kesulitan bagi saya yang pertama tentu masalah biaya untuk melakukan penelitian dan uji coba, untuk menemukan teknologi yang cocok untuk mengubah energi gelombang laut jadi energi mekanik, terutama untuk listrik,” ungkapnya. Selain itu, tidak banyak orang, termasuk akademisi, atau lembaga yang paham bahwa penelitian dan uji coba itu masih butuh tahapan-tahapan untuk menyempurnakan hasilnya.

Mengenai pengadaan peralatan untuk membangun PLTGL-SB itu, dia mengaku tidak mengalami kesulitan. Hampir 90 persen teknologi untuk mengembangkan pembangkit listrik ini berasal dari dalam negeri.

“Waktu penelitian dan uji coba lanjutan keempat, saya sempat dibantu oleh GM PLN wilayah Sumbar saat itu, Pak Sudirman. Waktu posisi Pak Sudirman digantikan GM yang baru, oleh GM yang baru itu, kelanjutannya diserahkan ke PLN Litbang di Duren Tiga, Jakarta,” kata Zamrisyaf. Saat ditanya apakah penelitiannya ini didukung oleh PLN, dia menjawab, “Sulit bagi saya menjawabnya karena sejak uji coba pertama sampai ketiga saya menggunakan dana pribadi, dan sampai saat ini belum ada tindak lanjut dari PLN.”

Kendati demikian, potensi komersial dari pembangkit listrik ini amat jelas, ungkap Zamrisyaf. “Selain ramah lingkungan dan tidak mempergunakan BBM, potensi energi primernya juga banyak tersedia dan menjanjikan. Selain itu, hampir 90 persen peralatan untuk membangun PLTGL sistem bandul menggunakan konten lokal,” penerima penghargaan 100 Inovasi Indonesia 2008 ini memaparkan. Dia sendiri sudah mematenkan penemuannya ini dan berencana untuk mencari sponsor untuk mengkomersialisasikannya.

Gambar: 100 Inovasi Indonesia

25
May
08

Belanda Sudah Lama Siapkan Blue Energy (air laut dan air sungai)

Eddi Santosa – detikcom, 23/05/2008 22:42 WIB, Laporan dari Den Haag

Pusat Blue Energy Afsluitdijk dan Prinsip Dasar

Den Haag – Pemerintah Belanda, pusat iptek Wetsus, serta swasta ENECO Energie dan REDstack sudah sejak 2004 menyiapkan blue energy. Tahun ini akan memasuki fase ujicoba.

Surat Hasrat atau Letter of Intent keempat pihak itu diteken tiga tahun kemudian (Desember
2007), di mana mereka sepakat untuk mengembangkan pusat energi listrik dari perbedaan potensi antara air laut (asin) dan air sungai (tawar).

Lokasi yag ditetapkan adalah kawasan berlimpah suplai air di muara Waddenzee dan Afsluitdijk.

Blue energy atau disebut juga Energi Osmotik dapat dilakukan dengan dua metode: Reverse Electrodialysis (RED) dan Pressure Retarded Osmosis (PRO). Belanda lebih memilih metode pertama (RED). Metode ini dipilih karena dinilai lebih menjanjikan untuk pengekstrakan energi dari perbedaan elektrolit antara air laut dan air sungai.

Perbedaan itu –melalui pemisahan membran– menurut Persamaan Nernst besarnya kurang lebih 80mV: (gambar rumus Nernst terlampir).

Perbedaan tegangan yang kecil ini dilipatgandakan dengan kompartemen seri oleh membran-membran yang selektif terhadap anion dan kation sehingga diperoleh tegangan besar untuk energi. Listrik dari Blue Energy ini sangat sustainable, karena tanpa emisi CO2, NOx dan SOx.

Lagi pula bahan bakunya melimpah dan gratis dari alam. Menurut bahan informasi yang diperoleh detikcom dari Wetsus, secara teori air sungai Rijn yang bertemu dengan Laut Utara dapat memasok 6000 megawatt (MW).

Kurang jelas mengapa pusat Blue Energy versi Joko Suprapto memilih lokasi di Cikeas. ( es / es )

Rujukan menarik:
1. blue energy belanda (Wetsus)

http://www.onderzoekinformatie.nl/en/oi/nod/organisatie/ORG1241843/

2. osmotic energy

http://exergy.se/goran/cng/alten/proj/97/o/

3. yang lain:

http://www.jbc.org/cgi/reprint/276/27/25078.pdf

http://www.pnas.org/cgi/reprint/80/14/4577.pdf

http://www.verdexchange.org/node/35

25
May
08

Norwegian oil company to build floating wind turbine

http://news. xinhuanet. com/english/ 2008-05/23/ content_8238110. htm

http://www.chinaview. cn 2008-05-23 19:03:41 Print BEIJING, May 23 (Xinhuanet) –

A Norwegian oil company plans to build next year what it says will be the world’s first full-scale floating wind turbine. State-controlled StatoilHydro ASA, based in the western port of Stavanger, announced it intent Thursday. StatoilHydro is the key producer in the offshore oil industry that makes Norway a major petroleum exporter. The company said the 80 million U.S. dollar pilot project combines its offshore oil experience with advanced technology for wind power. “We have drawn on our offshore expertise from the oil and gas industry to develop wind power offshore,” said Alexandra Bech Gjoerv, head of StatoilHydro’s new energy unit. The 2.3 megawatt windmill will be placed about six miles off the coast of Karmoey, near Stavanger on the west coast. StatoilHydro said it has already signed contracts for the construction of the wind turbine and its floating base. The electricity will be sent to land through underwater cables. Previous ocean windmill projects have been based on towers built onto the seabed near land, rather than floating structures.

However, windmills on land or near the coast often draw complaints they spoil the view and disturb wildlife. Bech Gjoerv said the windmill, with 260-foot blades, will be mounted on top of a giant spar buoy, a floating structure that is six meters in diameter and 100 meters deep. Spar buoys are often used for such things as offshore loading of oil from platforms to tankers. The company said it plans to conduct a two-year test with the unit after it is goes on line in late 2009 in hopes of demonstrating that floating wind power is commercially viable. (Agencies)

14
May
08

Timor Sea gas block a ‘huge’ find

Ika Krismantari, The Jakarta Post, Jakarta

The Masela Timor Sea gas block in East Nusa Tenggara has potential reserves of 10 trillion cubic feet (tcf), the country’s second’s biggest after the Tangguh block in Papua, an official says.

Upstream Oil and Gas Regulator (BPMigas) chairman Priyono said Monday that based on a first drilling trial by block operator Inpex, Japan’s largest oil company, data on available reserves showed a potential “almost as big as the Tangguh gas block”.

Tangguh block in Papua holds a proven gas reserve of 14.4 trillion cubic feet. This block, operated by British oil giant BP, is scheduled for production start-up by the end of 2008.

BPMigas planning deputy Achmad Luthfi said, however, that Inpex had yet to submit its proposal on project development, estimated to cost US$7 billion.

“Inpex’s representative from Japan will come to town tomorrow, to present detailed findings,” Luthfi said.

The Masela project is expected to involve the construction of a floating liquefied natural gas (LNG) processing terminal with a total capacity expected to reach 4 million tons per annum.

This will be the first floating LNG terminal in the country.

The decision to build a floating terminal is viewed more favorably by the government than the alternative option, which is to construct a pipeline to Australia, the closest possibility to the site, BPMigas said recently.

Due to the high cost of the proposed project, Inpex plans to seek partners to build the floating LNG terminal.

When asked about the plan, Luthfi said that a partnership permit would be given to Inpex and that it could decide on the matter under a business-to-business negotiation.

Should the project be approved this year, he said, the block is expected to start production by 2013.

Data from the Directorate General of Oil and Gas shows that so far Inpex has spent US$101.1 million on seismic surveys and drilling tests in the Masela block.

In this light, Priyono was upbeat that Indonesia could get back to its 1970s heyday in terms of gas production capacity.

During the past six years, the country’s gas production has been through a stagnant period with an average production of 8.15 billion cubic feet per day.

Priyono added that there were additional hopes for national gas production based on the Semai block, which is estimated to have probable gas reserves of 1 billion barrels of oil equivalent. The Semai block was offered in the government’s tender of oil and gas blocks last year.

It is reported that a number of oil and gas giants including U.S. Chevron, Exxon and ConocoPhillips, French Total and British Shell and BP are eyeing the Semai block.

The Timor Sea is part of the Indian Ocean situated between the islands of Rote and Timor, with underwater rights now split between Indonesia, Timor Leste and Australia.

11
May
08

lovely TV Ad

09
May
08

Wind Energy Indonesia

Background

Wind is a form of solar energy. The uneven heating of the atmosphere by the sun, the irregularities of the earth’s surface, and rotation of the earth cause winds. Wind flow patterns are modified by the earth’s terrain, bodies of water, and vegetation. Humankind uses this wind flow, or motion energy, for many purposes, to name a few: flying a kite/zeppelin, sailing, grinding grain, pumping water, and even generating electricity.

The terms wind energy or wind power describe the process by which the wind is used to generate mechanical power or electricity. Wind turbines convert the kinetic energy in the wind into mechanical power. This mechanical power can be used for specific tasks (such as grinding grain or pumping water) or a generator can convert this mechanical power into electricity.

A wind turbine works the opposite of a fan. Instead of using electricity to make wind, like a fan, wind turbines use wind to make electricity. The wind turns the blades, which spin a shaft, which connects to a generator and makes electricity. Large and modern wind turbines operate together in wind farms to produce electricity for utilities, while homeowners and remote villages, to help meet their energy needs, use small turbines.

Indonesia has relatively available potential site for wind energy utilization, but its utilization is still low. Currently, research and efforts are continuously conducted to open the possibilities of increasing the wind energy utilization.

Advantages/Disadvantages of Wind Energy

Despite its disadvantages, wind energy offers many advantages, which explains why it’s the fastest-growing energy source in the world. Research efforts are aimed at addressing the challenges to larger use of wind energy.

Advantages
Because wind energy is fueled by the wind, a clean fuel source, it makes wind energy a clean energy. Wind energy does not pollute the air like common power plants that rely on combustion of fossil fuels, such as coal or natural gas. Wind turbines do not produce harmful emissions that cause acid rain or greenhouse gasses, so it is environmentally friendly.
Wind energy is a domestic source of energy, produced in the Indonesia . The nation’s wind supply is relatively available (especially in the eastern part).
Wind energy relies on the renewable power of the wind, which cannot be used up. As already mentioned, wind is actually a form of solar energy.
Nowadays, wind energy is one of the lowest-priced renewable energy technologies available. Depending upon the wind resource and project financing of the particular project, wind energy cost less than 6 cents USD per kilowatt-hour (for potential site with wind speed > 5 m/s or offshore).
Wind turbines can be constructed on farms or ranches, thus benefiting the economy in rural areas, where most of the best wind sites are found. Farmers and ranchers can continue to work the land because the wind turbines use only a fraction of the land. Wind power plant owners make rent payments to the farmer or rancher for the use of the land.

Disadvantages
Wind power must compete with conventional generation sources on a cost basis. Depending on how energetic a wind site is, the wind farm may or may not be cost competitive. Even though the cost of wind power has decreased dramatically in the past 10 years, the technology requires a higher initial investment than fossil-fueled generators (and even other renewable based generators).
The major challenge to using wind as a source of power is that the wind is intermittent and it does not always blow when electricity is needed. Wind energy cannot be stored (unless batteries are used); and not all winds can be harnessed to meet the timing of electricity demands.
Suitable wind sites are often located in remote locations, far from cities where the electricity is needed.
Wind resource development may compete with other uses for the land and those alternative uses may be more highly valued than electricity generation.
Although wind power plants have relatively small impact on the environment compared to other conventional power plants, there is some concern over the noise produced by the rotor blades, aesthetic (visual) impacts, and sometimes birds have been killed by flying into the rotors. Most of these problems have been resolved or greatly reduced through technological development or by properly siting wind plants.

General Condition in Indonesia
Wind energy development is part of national energy program in order to realize a sustainable supply and utilization of energy.

There are some potential locations in the country for wind energy utilization.
Installed capacity for wind power is relatively still small compared to its potential.
Wind Energy Potential in Indonesia

Wind energy potential in Indonesia quite varies and could be classified into three categories, namely:
small-scale utilization, with wind speed of 2.5 – 4 m/s and capacity up to 10 kW;
medium-scale utilization, with wind speed of 4 – 5 m/s and capacity of 10 – 100 kW;
large-scale utilization, with wind speed and capacity higher than 5 m/s and 100 kW, respectively.

Recorded and measured wind data are as follow:
Region of Nusa Tenggara Barat: wind speed ranging from 3.4 – 5.3 m/s (10 locations);
Region of Nusa Tenggara Timur: wind speed ranging from 3.2 – 6.5 m/s (10 locations);
Region of Sulawesi and other: wind speed ranging from 2.6 – 4.9 m/s (10 locations).

Detail data* of each region is tabulated below.

* Data is properties of National Institute for Aeronautics and Space ( LAPAN).

National Wind Energy Technology

Generally speaking, US / Europe wind turbines available in the market are usually designed for high wind speed application which is not quite appropriate for wind condition in Indonesia . Meanwhile, there are some wind turbines, which might be appropriate to be used in the country. Therefore, development of wind energy technologies in Indonesia is widely opened. Currently, wind energy technologies developed in the country are designs and prototypes for:
power plants with capacity of 50 – 10,000 W;
mechanical power pumping with capacity of 45 – 250 liters/min;
power plants with capacity of 3.5 kW coupled with electrical pump for water pumping.

National Fabrication Capability

In general, status of national fabrication for wind energy conversion system is:
small-scale utilization: national industry has already able to built wind energy conversion system components up to 5 kW capacity and they are ready for mass production if the market available;
medium and large scale utilization: still under development.

Application

Testing, information dissemination, and direct utilization of wind energy for various applications, to wit: lighting, battery charging, radio communication, television, radio, home industry, telecommunication, water pumping.

List of Companies Working on Wind Energy

Below are list of companies involved in wind energy development in Indonesia . To name a few:
PT Indonesia Power
PT PLN-JE
PT Bumi Energi Equatorial
Obayashi Corporation
PT Guna Elektro
PT Indokomas Buana Perkasa
PT Citrakaton Dwitama.

Supporting Facilities

To support wind energy development, the country already has various facilities:
wind potential measurement equipments;
wind energy conversion system laboratory;
field-testing laboratory;
aerodynamic laboratory – subsonic speed.

Barriers

Below are several barriers encountered for wind energy development in the country, viz.:
technical and financial difficulties in data access for input on establishment of wind potential map;
limited fund to access and identify potential location especially in islands and remote areas;
relatively high price for wind energy compared to fossil based energy;

available wind energy products (usually for high speed application) are not suitable for the country’s application (low speed).

source : http://www.energiterbarukan.net/index.php?option=com_content&task=view&id=37




October 2014
M T W T F S S
« Mar    
 12345
6789101112
13141516171819
20212223242526
2728293031  

Recent Comments

mustaqim indrawan on Pembangkit Listrik Tenaga Angi…
Deny WS on Pembangkit Listrik Tenaga Angi…
Abdurrahman ibnu uma… on [INFO] Open Source Software…
sinta on Wind Energy Indonesia
rivanroyono on Teknik Fisika (Engineering Phy…

Flickr Photos

moscow mime

crete 11

Feeling autumnal evening winds

More Photos

Blog Stats

  • 87,821 hits

where you from

<script language="Javascript" src="http://www.ip2phrase.com/ip2phrase.asp?template=You are browsing our website through ISP .">
Powered by IP2Location.com

Follow

Get every new post delivered to your Inbox.